Frequency-selective coding of translation and tilt in macaque cerebellar nodulus and uvula.

نویسندگان

  • Tatyana Yakusheva
  • Pablo M Blazquez
  • Dora E Angelaki
چکیده

Spatial orientation depends critically on the brain's ability to segregate linear acceleration signals arising from otolith afferents into estimates of self-motion and orientation relative to gravity. In the absence of visual information, this ability is known to deteriorate at low frequencies. The cerebellar nodulus/uvula (NU) has been shown to participate in this computation, although its exact role remains unclear. Here, we show that NU simple spike (SS) responses also exhibit a frequency dependent selectivity to self-motion (translation) and spatial orientation (tilt). At 0.5 Hz, Purkinje cells encode three-dimensional translation and only weakly modulate during pitch and roll tilt (0.4 +/- 0.05 spikes/s/degrees/s). But this ability to selectively signal translation over tilt is compromised at lower frequencies, such that at 0.05 Hz tilt response gains average 2.0 +/- 0.3 spikes/s/degrees/s. We show that such frequency-dependent properties are attributable to an incomplete cancellation of otolith-driven SS responses during tilt by a canal-driven signal coding angular position with a sensitivity of 3.9 +/- 0.3 spikes/s/degrees. This incomplete cancellation is brought about because otolith-driven SS responses are also partially integrated, thus encoding combinations of linear velocity and acceleration. These results are consistent with the notion that NU SS modulation represents an internal neural representation of similar frequency dependencies seen in behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How vestibular neurons solve the tilt/translation ambiguity. Comparison of brainstem, cerebellum, and thalamus.

The peripheral vestibular system is faced by a sensory ambiguity, where primary otolith afferents respond identically to translational (inertial) accelerations and changes in head orientation relative to gravity. Under certain conditions, this sensory ambiguity can be resolved using extra-otolith cues, including semicircular canal signals. Here we review and summarize how neurons in the vestibu...

متن کامل

Spatiotemporal properties of optic flow and vestibular tuning in the cerebellar nodulus and uvula.

Convergence of visual motion and vestibular information is essential for accurate spatial navigation. Such multisensory integration has been shown in cortex, e.g., the dorsal medial superior temporal (MSTd) and ventral intraparietal (VIP) areas, but not in the parieto-insular vestibular cortex (PIVC). Whether similar convergence occurs subcortically remains unknown. Many Purkinje cells in verma...

متن کامل

Relationship between complex and simple spike activity in macaque caudal vermis during three-dimensional vestibular stimulation.

Lobules 10 and 9 in the caudal posterior vermis [also known as nodulus and uvula (NU)] are thought important for spatial orientation and balance. Here, we characterize complex spike (CS) and simple spike (SS) activity in response to three-dimensional vestibular stimulation. The strongest modulation was seen during translation (CS: 12.8 +/- 1.5, SS: 287.0 +/- 23.2 spikes/s/G, 0.5 Hz). Preferred ...

متن کامل

Differential projections from the vestibular nuclei to the flocculus and uvula-nodulus in pigeons (Columba livia).

The pigeon vestibulocerebellum is divided into two regions based on the responses of Purkinje cells to optic flow stimuli: the uvula-nodulus responds best to self-translation, and the flocculus responds best to self-rotation. We used retrograde tracing to determine whether the flocculus and uvula-nodulus receive differential mossy fiber input from the vestibular and cerebellar nuclei. From retr...

متن کامل

Head Tilting Elicited by Head Turning in Three Dogs with Hypoplastic Cerebellar Nodulus and Ventral Uvula

The nodulus and ventral uvula (NU) of the cerebellum play a major role in vestibular function in humans and experimental animals; however, there is almost no information about NU function in the veterinary clinical literature. In this report, we describe three canine cases diagnosed with presumptive NU hypoplasia. Of them, one adult dog presented with cervical intervertebral disk disease, and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 40  شماره 

صفحات  -

تاریخ انتشار 2008